module$49822$ - traduzione in greco
DICLIB.COM
Strumenti linguistici IA
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:     

Traduzione e analisi delle parole da parte dell'intelligenza artificiale

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

module$49822$ - traduzione in greco

GENERALIZATION OF VECTOR SPACE, WITH SCALARS IN A RING INSTEAD OF A FIELD
Module (algebra); Submodule; Module theory; Submodules; R-module; Module over a ring; Left module; Module Theory; Unital module; Module (ring theory); Right module; Left-module; Module mathematics; Ring action; Z-module; ℤ-module

module      
n. μονάδα μέτρησης
control unit         
  • Animation of the control matrix of a simple hardwired control unit performing an LDA-instruction
COMPONENT OF A COMPUTER'S CPU
Control Unit; Control module; Hardwired control; Hardwired control unit; Hardwired control units
μονάδα ελέγχου
object code         
COMPUTER CODE COMPILED FROM SOURCE CODE
Object Code; Overhead code; Code object
τελικός κώδικας

Definizione

module
¦ noun each of a set of standardized parts or independent units that can be used to construct a more complex structure.
?each of a set of independent units of study or training forming part of a course.
?an detachable self-contained unit of a spacecraft.
Origin
C16: from Fr., or from L. modulus (see modulus).

Wikipedia

Module (mathematics)

In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of module generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers.

Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication.

Modules are very closely related to the representation theory of groups. They are also one of the central notions of commutative algebra and homological algebra, and are used widely in algebraic geometry and algebraic topology.